Edit Module
Edit Module
Edit Module
Edit Module

Saving Stroke Survivors

New treatments, tactics, and technologies have inaugurated a new era in the battle against an affliction that in the past left far too many people disabled—or dead

(page 1 of 2)

An illustration of a male silhouette, by Daniel Stolle
“A new era has dawned for brain salvage,” says John Whapham, a neurosurgeon at Loyola University Hospital.

On a Saturday night earlier this year, Fidencio Nuñez, a 48-year-old cook at Shanahan’s in Forest Park, had just finished preparing a batch of seafood jambalaya. That’s when a coworker noticed that Nuñez was losing his balance and was unable to hold on to a chair with his left hand. A waitress called 911, and an ambulance soon whisked the married father of three to the closest hospital and then on to the Stroke Center at Loyola University Hospital in Maywood. A large clot was preventing blood and oxygen from getting to the right side of Nuñez’s brain, and it was so big that a drug called TPA (tissue plasminogen activator)—essentially Drano for clogged pipes in the cranium—could not dissolve it and restore blood flow.

Nuñez was experiencing a stroke. This affliction, the third-leading killer in the United States, occurs when blood vessels to the brain either burst (a hemorrhagic stroke) or are blocked by a clot (an ischemic stroke). Both events prevent the delivery of oxygen to the brain and, as a result, cause cells to die.

But fast work and a high-tech assistant helped avert disaster for Nuñez. After receiving a page, Sarkis Morales-Vidal, a neurologist at Loyola, used his home computer to examine Nuñez remotely via a robot at the hospital that was equipped with a stethoscope, a microphone, and a full-color high-definition camera. (The robot transmits test results and images, such as CT scans, to the doctor, who can see, hear, and talk to the patient, the patient’s family, and the medical team.) Morales-Vidal also notified the Loyola neurosurgeon John Whapham, who conducted his own examination of Nuñez from home. “We prepare proactively so we don’t lose time,” says Whapham, who can also remotely monitor patients traveling to a hospital by ambulance or helicopter.

After he got to Loyola, Whapham inserted a microcatheter the width of a pencil lead into Nuñez’s thigh; the microcatheter entered the femoral artery and from there traveled to Nuñez’s brain. Whapham then used a special tool to break up the clot and another device to suck the debris from the brain like a vacuum cleaner. “We create a road map with dye,” he says, “and then we steer, sort of like a video game, using these giant monitors.” With this procedure, instead of enduring a significant head wound, stroke patients, Whapham notes, “can go home with a Band-Aid on their leg.”

The quick, high-tech treatment is a game changer. “It can make the difference between the person who walks out and the person who’s dead,” says Whapham. “The next morning, [Nuñez] was watching football in his bed”—and he was back home within two days. “A new era has dawned for brain salvage,” Whapham declares.

* * *

Each year, about 795,000 people in the United States experience a stroke—610,000 of them for the first time—and, according to the American Heart Association, between 15 and 30 percent are permanently disabled. But those numbers could go down: As of March 1st, with patients who have exhibited symptoms of stroke for less than six hours, ambulances bypass local emergency rooms and head straight for one of 19 stroke centers in the Chicago area. “Mortality is lower if you’re treated at stroke centers,” says Shyam Prabhakaran, the neurologist who directs the stroke program at Rush University Medical Center. (He is also a spokesman for the American Heart Association and chaired the committee that proposed the new stroke center policy.)

The holy grail of stroke research remains the discovery of a way to restore brain function months, or even years, after a stroke occurs. The secret may lie in blocking a protein called Nogo-A, which prevents the brain’s nerve fibers, called axons, from forming new connections. At Loyola University, Gwendolyn Kartje (who is also chief of neuroscience at the Edward Hines Jr. V.A. Hospital) is jump-starting the growth of nerve fibers in the brains of rats that have had strokes, which could reverse much of the damage. As Kartje reported in the journal Stroke in January, she induces strokes in aged rats to figure out how still-healthy parts of the brain can form new connections and take over for damaged areas. Kartje gives the rodents a drug made by Novartis that turns off Nogo-A so the brain regains a more youthful plasticity.


Illustration: Daniel Stolle


Edit Module


Edit Module
Submit your comment

Comments are moderated. We review them in an effort to remove foul language, commercial messages, abuse, and irrelevancies.

Edit Module